Pathways to Scientific Teaching UCSD and Michigan State University Postdoctoral Winter Quarter 2021 and Spring Semester 2021

Instructor:

Diane Ebert-May, PhD University Distinguished Professor Department of Plant Biology Michigan State University (cell) 517-256-3536 <u>ebertmay@msu.edu</u>

<u>Seminar Overview:</u> I enthusiastically invite postdoctoral fellows in the life sciences to learn to develop and implement state-of-the-art learner-centered instructional materials and teaching strategies for both large and small enrollment undergraduate STEM courses (in person and remotely). During this seminar, we will use scientific teaching to actively engage you in evidence-based instructional methods shown to be effective in helping students learn core disciplinary ideas by using science practices -- so it is not only <u>what</u> students learn, but <u>how</u> they use that knowledge. Importantly, the pathway to scientific teaching integrates the biological research model into a teaching approach by using science practices desired for all students, such as working with data, creating and using models, reasoning analytically, developing arguments, and working collaboratively. Postdocs will gain experience in developing a course framework and class lessons, instructional methods, and assessments directed at improving and assessing students' understanding of biology. Participants will select one or two core scientific concepts in the discipline, and develop an instructional module that is suitable for implementation in an introductory biology course taught at the freshman or sophomore level), and/or in a job interview that requests a demonstration of teaching.

<u>Seminar Format</u>: The seminar meets two hours weekly on Tuesdays, 12:00 – 2 pm ET, beginning on January 12 and continuing weekly until March 9, 2021. I encourage you to enroll with a colleague from your lab, although that is not required, it is just more fun. The topics in the seminar are intended to promote and build learner-centered student instruction in undergraduate science courses. Participants will practice inquiry-based, active learning throughout the seminar.

Upon completion of the seminar, postdocs will receive a certificate of participation which is citable on your CV.

<u>Course Delivery and Technology Platforms</u>: This course will occur **online**. Class meetings will be held synchronously (at the scheduled class meeting time) through Zoom. You will access course materials, including notes, homework assignments, supplemental readings, recordings of class meetings, and additional resources on Free Canvas for Teachers. This course management system is a user-friendly platform for us to work with.

Zoom Link: Pathways to Scientific Teaching 2021 Time: This is a recurring meeting Meet anytime

Join Zoom Meeting https://msu.zoom.us/j/97648584797

Meeting ID: 976 4858 4797 Passcode: SWIM Since our course is online, it will be helpful to have a reliable *internet connection*. I understand that this is not always possible, and for that reason I shall make video recordings of each seminar available on Canvas immediately following class. In addition, I have found it useful to have a smartphone with camera for photographing and uploading handwritten work. If you have a tablet with drawing features, you can upload your work from that as well. We will be experimenting with additional technology tools throughout the course – particularly those that facilitate group interactions and collaborative work (e.g., Google Docs). Since the onset of Covid, I have given many departmental seminars and workshops online, but this will be the first time I've taught the entire Pathways course online. I am both excited and nervous –but we do what we have to do, right?

<u>Readings</u>: Assigned during the seminar and I'll send a short article before we begin.

<u>Evaluation</u>: Instructional modules are assessed using criteria developed for edition 2 of *Pathways to Scientific Teaching* (Ebert-May and Hodder eds 2008). Revision of the new edition is in progress.

Goals and Impact of Course: Participants will

- Demonstrate how and why to create inclusive, learner-centered courses in STEM how do <u>all</u> students learn?
- Practice how to actively engage students in cooperative work and inquiry-based activities in all types of learning environments.
- Construct a unit/module in which objectives, assessments and instruction are aligned and that promote learner-centered instruction by engaging <u>all</u> students in science practices and core concepts during each class meeting.
- Create learning goals and assessments for the course that enable students to demonstrate deep understanding of core ideas and concepts in biology by using science practices (e.g., modeling, arguments).
- Use and evaluate instructional resources, technology and literature.
- Create, analyze and use assessment data to inform and improve instruction.
- Participate in planning and possibly teaching a class session in an introductory biology course.

When? Seminar Number	Topics	Driving questions	Readings
1 Jan 12	Establishing a learning community	Who are we? Who are your students? What are your teaching and mentoring philosophies? How do people learn? What does a learner-centered classroom look like and sound like?	Handelsman et al 2004 How People Learn (Ch1-3)
2 Jan 19	Effective classroom pedagogy evidence-based practices that are inclusive	What should we teach? What do students need to learn? What are the big ideas in biology?	Waldrop 2015 Vision & Change (Ch 1, 2)
3 Jan 26	Course frameworks and individual lessons/units	Designing course framework and learning outcomes - what are the core ideas/concepts? Use	Cooper et al 2015 Canning et al 2019

Pathways to Scientific Teaching Weekly plan (not cast in stone!)

		scientific practices to	
		learn/connect concepts.	
4	Assessment of	How will you know that students	Tanner 2010
Feb 2	Learning	have learned? What evidence will	Long et al 2014
		you and your peers accept?	
5	Use science	How do we create substantive	Laverty et al 2015
Feb 9	practices for	assessments (e.g., exam	
	assessment	questions)? How do we manage	
		scoring and grades?	
6	Inclusive learning	How do all students learn? What	Theobald et al 2017
Feb 16	environments	about motivation? How do you	
160 10		think about diversity and scientific	
		teaching? How do you describe	
		that in your teaching philosophy?	
7	Assessment of	How do we score and evaluate	Sellers et al Case 7
Feb 23	Learning – more	exams? What to do with the data?	
10020	detail		
8	Instructional design	Group peer-review on learning	
March 2		module. Feedback – revise unit.	
9	Evaluating	How do we evaluate teaching?	
March 9	Instruction	What are the criteria? Peer review	
		and feedback.	